In this paper we investigate the use of classical fMRI Random Effect (RFX) group statistics when analyzing a very large cohort and the possible improvement brought from anatomical information. Using 1326 subjects from the IMAGEN study, we first give a global picture of the evolution of the group effect t-value from a simple face-watching contrast with increasing cohort size. We obtain a wide activated pattern, far from being limited to the reasonably expected brain areas, illustrating the difference between statistical significance and practical significance. This motivates us to inject tissue-probability information into the group estimation, we model the BOLD contrast using a matter-weighted mixture of Gaussians and compare it to the common, single-Gaussian model. In both cases, the model parameters are estimated per-voxel for one subgroup, and the likelihood of both models is computed on a second, separate subgroup to reflect model generalization capacity. Various group sizes are tested, and significance is asserted using a 10-fold cross-validation scheme. We conclude that adding matter information consistently improves the quantitative analysis of BOLD responses in some areas of the brain, particularly those where accurate inter-subject registration remains challenging.